Topological spaces with an ω^{ω} -base

Taras Banakh

Jan Kochanowski University in Kielce (Poland) and

Ivan Franko National University of Lviv (Ukraine),

Kielce-Lviv, Poland-Ukraine

t.o.banakh@gmail.com

Abstract: Given a partially ordered set P we shall discuss properties of topological spaces X admitting a P-base, i.e., an indexed family $(U_{\alpha})_{\alpha \in P}$ of subsets of $X \times X$ such that $U_{\beta} \subseteq U_{\alpha}$ for all $\alpha \leq \beta$ in P and for every $x \in X$ the family $(U_{\alpha}[x])_{\alpha \in P}$ of balls $U_{\alpha}[x] = \{y \in X : (x,y) \in U_{\alpha}\}$ is a neighborhood base at x. A P-base $(U_{\alpha}[x])_{\alpha \in P}$ for X is called *locally uniform* if the family of entourages $(U_{\alpha}U_{\alpha}^{-1}U_{\alpha})_{\alpha \in P}$ remains a P-base for X. A topological space is first-countable if and only if it has an ω -base. By Moore's Metrization Theorem, a T_0 -space is metrizable if and only if it has a locally uniform ω -base.

In the talk we shall discuss topological spaces possessing a (locally uniform) ω^{ω} -base. Our results show that spaces with an ω^{ω} -base share some common properties with first countable spaces, in particular, many known upper bounds on the cardinality of first-countable spaces remain true for countably tight ω^{ω} -based topological spaces. On the other hand, topological spaces with a locally uniform ω^{ω} -base have many properties, typical for generalized metric spaces. Also we study Tychonoff spaces whose universal (pre- or quasi-) uniformity has an ω^{ω} -base and show that such spaces are close to being σ -compact.

More information can be found in the paper-book [1].

Keywords: generalized metric space, partially ordered set, neighborhood base.

References:

[1] T. Banakh, "Topological spaces with an ω^ω-base", 105 pp. preprint (https://arxiv.org/abs/1607.07978).